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Abstract—In shared control, humans and intelligent robots
jointly complete real-time control tasks with their complementary
capabilities for improved performance unavailable by neither side
on its own, which is attracting more and more attentions in recent
years. Arbitration, as an indispensable part of shared control,
determines how control authority is allocated between the human
and robot, and the definition of that policy has always been one of
the fundamental problems. In this paper, we propose an adaptive
arbitration method for shared control systems, which minimizes
the deviation from the human inputs while ensuring the system
performance based on deep reinforcement learning. We provide
humans the maximum assistance with the minimal intervention,
in order to balance human’s need for control authority and need
for performance. We apply our method to real-time control tasks,
and the results show that our method achieves high task success
rate and shorter task completion time with less human workload,
while maintaining higher human satisfaction.

Index Terms—Arbitration, Shared Control, Minimal Interven-
tion, Deep Reinforcement Learning

I. INTRODUCTION

With the development of artificial intelligence, intelligent

robots are capable of building their own behavioral strategies,

including goal prediction, strategic planning and action ex-

ecution, exceeding predefined behaviors. However, complete

autonomy is still difficult to achieve, and the shared control

of humans and intelligent robots is a feasible solution to

the complexity and unpredictability of actual tasks, which is

attracting more and more attentions in recent years.

In shared control, humans and intelligent robots jointly

complete real-time control tasks with their complementary ca-

pabilities, for better performance than their individual control

[7] [12]. Take drone landing as an example: humans have

greater flexibility in changing factors but it is difficult for them

to control in multiple dimensions at the same time, robots have

advantages in handling repetitive tasks with high precision and

long endurance but it is difficult for them to cope with different

complex situations. Shared control combines human inputs and

robot actions to address this problem.

Many shared control systems for the tasks determined

by humans mainly rely on two components: the inference

of human intention which is often not directly available to

the robots, and the arbitration between robot actions and

human inputs [5] [6] [13]. Arbitration determines how control

authority is allocated between the human and robot, and the

definition of that policy has always been one of the funda-

mental problems [1]. The linear combination is a common

form of arbitration and has been widely used in many shared

control systems [3] [6] [7]. The arbitration weights as the core

factors are often predefined by humans, which may not remain

optimal for the system in the long term [9]. To cope with this

challenge, some other methods calculate the parameters based

on the confidence of the intention inference, and when the

confidence is high, the human often loses control authority.

[14]. These methods exploit the maximum performance of

the intelligent robot but are deleterious for tasks that require

humans to make the final decision, especially tasks in dynamic

and uncertain environments. On the other hand, excessive

intervention violates human’s preference for more control

authority, and may lead humans to resist automatic assistance

instead of getting help from it, which weakens the system

performance and human satisfaction [2] [3].

In this paper, we propose an adaptive arbitration method

for shared control systems, which minimizes the deviation

from the human inputs while ensuring the system performance

based on deep reinforcement learning. We provide humans the

maximum assistance with the minimal intervention, in other

words, when intelligent robots intervene for better perfor-

mance, they should modify human inputs as little as possible to

increase their acceptance of assistance. Specifically, we use the

long short-term memory network to infer human’s intention

and calculate the confidence, and use deep reinforcement

learning algorithm to estimate the control effect of all actions

(the discrete action space or sampling of continuous action

space). We set an adaptive threshold based on the confidence
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of intention inference and select the action that is closest to the

human input among the actions whose control effect exceeds

the threshold as the optimal action for execution, in order

to balance human’s need for control authority and need for

performance.

Our main contributions are summarized as follows:

• An adaptive threshold for action selection that maintains

optimal in the changing environment.

• A formulation of arbitration for shared control that ad-

heres to the minimal intervention principle and improves

the system performance.

• A shared control system that does not require the dynamic

model of the controlled system, the human’s behavior

strategy or other information about the human’s ability,

which may be necessary in other works but hard to get

[15]–[17].

The rest of this paper is organized as follows. In Section

II we provide related works. In Section III we describe our

method in detail. In Section IV we give experimental processes

and results. We conclude in Section V.

II. RELATED WORK

A. Shared Control

Artificial intelligence technology has developed vigorously

in recent years and has been applied to many traditional control

and automation fields. However, we are far from the goal of

replacing human labor with automation. The main reason is

that the environment and even the system itself is dynamically

changing, and it is difficult to design the system once and

for all. Many automated control systems still require humans

to continuously and closely interact with intelligent robots in

terms of supervision, goal setting, emergency response, etc.,

and this mode is called shared control.

One of the core challenges in shared control is to assign ap-

propriate control authority to humans and robots to maximize

the integration of human intelligence and robot intelligence,

that is, arbitration. For example, humans and robots jointly

control the speed of the end effector of the robotic arm,

and arbitration determines the degree of influence of their

respective actions on the final executed action. Reference [1]

divides arbitration into four types:

• co-activity, humans and intelligent robots complete dif-

ferent subtasks, such as humans controlling the direction

of the robotic arm, and robots controlling the speed of

the end effector.

• master-slave, humans and robots have their own auton-

omy, but when they conflict, humans retain the ultimate

authority.

• teacher-student, the intelligent robot is used to train

humans, which primarily entails robotic rehabilitation,

and the system constantly attempts to reduce the amount

of robotic assistance.

• collaboration, humans and robots are equal partners,

which is also the main research area of this article.

The linear combination between human and robot strategies

is a common form of arbitration, and the arbitration parameter

α can be defined as related with the confidence of intention

inference c. Reference [4] describes this model as a line graph

defined by three parameters (θ1, θ2, θ3): when c < θ1, the

human control the system alone; when θ1 < c < θ2, α is

proportional to c; and when c > θ2, α = θ3. Although these

approaches improve the task performance, they are contrary to

the human’s preference to be in control and lead to excessive

unacceptable interventions and human dissatisfaction. Human

satisfaction and their acceptance of robot autonomy are crucial

in shared control, which prompts our method to follow the

principle of minimal intervention [11].

B. Deep Reinforcement Learning
Many shared control systems model actual tasks as Markov

Decision Processes (MDP) or Partially Observable Markov

Decision Process (POMDP), which often assume a priori

knowledge of the environment dynamics and the human’s

behavior policy. For example, reference [6] and [3] models

shared control as a POMDP with uncertainty over the human’s

goal. Reference [8] uses POMDP to build a unified framework

for the human-in-loop control system, so that the system

monitors the state of the human and robot and gives feedback

when necessary. The assumption of prior knowledges limits

the application of these methods in practical tasks, and the

deep reinforcement learning (DRL) methods that can learn

strategies in the process of interacting with the environment

has unique advantages in eliminating these dependencies. Ref-

erence [10] models the confidence and consistency of human

feedback by extending deep reinforcement learning, thereby

using discrete human feedback to enhance the performance

of robots. Reference [9] proposes a shared control framework

based on model-free reinforcement learning, which takes the

system states and human’s commands or inferred goals (if

available) as inputs and produces the optimal action that best

match human commands. Our method optimizes the artificially

specified arbitration parameter in [9] to adaptive parameter that

match the system states in real time, and obtains better control

effects.

III. METHOD

As shown in Fig.1, the main process of our method is

that the human gives control command ah based on the

system state s. The long short-term memory network infers the

human’s goal g based on a series of human inputs and system

motion trajectories (III-A). The deep Q network estimates the

control effects r of all actions based on the inferred goal g
(III-B). Then the arbitration module selects the optimal action

a based on the confidence of intention inference c and the

control effects of actions r (III-C). The controlled system

executes the optimal action aopt and evolves to the next state.

A. Intention Inference
The long short-term memory network can process the se-

quence data associated before and after, and can solve the
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Fig. 1. The block diagram of our method.

problem of gradient disappearance and gradient explosion

in general recurrent neural networks, so we use the LSTM

network for intention inference. We assume that a set of

possible goals G is known (such as all possible landing points

in the drone landing task), the human’s goal exists in this

set but is unknown to the robot. The LSTM network takes

a series of human inputs and system motion trajectories as

inputs, and predicts the goal gp. We regard the goal in the

known goal set that is closest to the prediction result gp as the

human’s goal g, and take the normalized result of the distances

between all goals in the goal set and the prediction result as the

probability distribution on the goal set. And the confidence of

the inference is the maximum probability minus the minimum

probability in the probability distribution:

c = max
g′∈G

p(g′|ah)− min
g′∈G

p(g′|ah), c ∈ [0, 1] (1)

There are two extreme cases:

• The probability of one goal is 1, and the others are 0. In

this case, the inference confidence is 1, that is, the robot

is absolutely sure which the human’s goal is.

• All goals have equal probability. In this case, the con-

fidence is 0, that is, the robot is completely uncertain

which one human’s goal is.

B. Control Effects Estimation

The purpose of reinforcement learning is to acquire the

optimal strategy so that the sum of the rewards generated by

the agent’s multi-step actions in the process of achieving the

final goal reaches its maximum. The agent selects action at at

each time step according to the current environmental state st
and behavior strategy π, that is, at = π(st). The environmental

state evolves to st+1 and gives the agent a feedback reward rt
after executing at. The transition of this quadruple form will

repeat until the system reaches terminal states or the maximum

number of transitions, and this process is called an episode.

The optimal strategy is to maximize the cumulative reward

value R =
∑+∞

k=0 γ
krt+k at the end of the episode, where the

constant γ ∈ (0, 1] is the discount factor.

Algorithm 1: Minimal Intervention Shared Control via

DQN

Initialize experience replay memory D to capacity N ;
Initialize Q-function with random weights θ ;

Initialize target Q̂-function with weights θ− = θ ;
for episode=1,M do

for t=1,T do
Get environment state st and human input ah ;
Infer intent and sample action a using Eq.4 ;
Execute at = a, observe state st+1 and reward rt ;
Store transition (st, at, rt, st+1) in D ;
if st+1 is terminal then

for k=1 to K do
Sample batch (sj , aj , rj , sj+1) from D ;
a′
j+1 = argmaxa′Q(sj+1, a

′; θ) ;

yj = rj + γQ̂(sj+1, a
′
j+1; θ

−) ;

θ ← θ − η∇θ

∑
j(yj −Q(sj , aj ; θ))

2 ;

end
end
Every C step reset Q̂ = Q ;

end
end

The optimal policy can be obtained by solving the Bellman

equation:

Qπopt(s, a) = Q∗(s, a) = Es′ [r + γmaxa′Q∗(s′, a′)|(s, a)]
(2)

The Q(s, a) is the maximum sum of the discount rewards

that can be obtained within the limited steps in the future

after performing action a in the state s, which represents the

benefit that the action can bring to the current task. The deep

Q network (DQN) is a neural network to approximate Q(s, a)
[20]. It takes the system states and human commands as inputs,

and produces the Q(s, a) for all actions as outputs, using

this end-to-end mapping to achieve shared control. Therefore,

we use the cumulative reward calculated by DQN as the

estimation of the action’s control effect.

C. Arbitration

We follow the principle of minimal intervention, that is,

when intelligent robots intervene for better performance, they

should modify human inputs as little as possible [11]. If the

action performed by the controlled system is always far from

the human input, the human may no longer trust the system,

resulting in a decrease in the information contained in their

inputs, which is harmful to intention inference. Therefore,

we take the action closest to human input among actions

with sufficiently good control effects as the optimal action.

The confidence of intention inference determines the adaptive

threshold of the control effect. The higher the confidence, the

higher the probability that the robot will make the correct

decision, so we choose the best action from a smaller range.

Formally:

Athreshold = {a ∈ A | Q′(s, a) ≥ c×Q′(s, amax)} (3)

aopt = argmax
a′∈Athreshold

f(a′, ah) (4)
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(a) (b) (c)

Fig. 2. 2(a): The success rates of ten participants performing tasks in three control modes. 2(b): The average steps for each episode of ten participants
performing tasks in three control modes. 2(c): The number of human inputs for each episode (the number of keystrokes per episode) of ten participants
performing tasks in three control modes.

where A is the discrete action space or sampling of continuous

action space and Athreshold is the action space calculated

according to the threshold to select the optimal behavior aopt.
Q′(s, a) = Q(s, a)−mina′∈AQ(s, a′) is designed to prevent

the error caused by negative Q values. amax is the action with

the highest reward calculated by DQN . The function f(a′, ah)
calculates the similarity between action a′ and human input

ah. Especially, no input from human will cause the robot to

deliver its highest-value action to the controlled system. The

overall algorithm is shown in Algorithm 1.

IV. SIMULATION EXPERIMENT

Our method is validated on the simulated Lunar Lander

game from OpenAI Gym, as shown in Fig.3. The possible

goal set includes three pairs of randomly generated flags on

the ground. The human and robot jointly control the three

engines distributed on the left, middle, and right sides of the

lander to make a smooth landing between the target pair of

flags. If the lander crashes into the ground, flies out of the

boundary, or fails to land smoothly to the target point within

the limited time, the task will fail. The intelligent robot knows

the position of the lander and the three pairs of flags, but it

needs to infer which pair is the human’s goal based on the

inputs. The system state vector includes the position, speed,

angular velocity of the lander, the angle with the vertical,

and whether it touches the ground. The action space is the

opening and closing of the three engines. The reward function

is to punish speed, tilt angle, distance from the target flag

and task failure, and gives the agent a large reward when

the task succeeds. The similarity function f(a, ah) estimates

whether the user input ah and the action a control the same

engine or whether they control the lander to move in the

same direction, for example, f((left, on), (right, off)) = 1,

f((left, on), (left, off)) = −1.

To estimate the effect of our method, we invited ten par-

ticipants with an average age of 25 to operate the system in

three control modes:

Fig. 3. The Lunar Lander game.

• HIC: human individual control (human-only, no assis-

tance).

• LASC: linear arbitration shared control.

• MISC: minimal intervention shared control.

For LASC, the arbitration weights of robot action and human

input are c and 1− c, respectively. If the fused action is not in

the action space, the action with higher weight will be used

directly. Each participant operates 40 episodes in advance to

familiarize himself with the environment and intelligent robot.

In order to facilitate the collection and analysis of data, we

assigned the task to the participants to smoothly land the lander

in the middle of yellow flags.

The experimental results are shown in Fig.2. Fig.2(a) shows

the success rates and the crash rates of ten participants

performing tasks in three control modes. The addition of

intelligent robots has greatly increased the success rates of the

tasks. It is difficult for humans to precisely control the three-

dimensional engines to maintain stability when the lander

drops, causing the lander to crash into the ground–the crash

rates of the ten participants are greater than 0.8. Intelligent

robots can effectively control the lander to land slowly, al-

lowing humans to pay more attention to the direction of the

lander, thereby greatly increasing the success rate. The success
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TABLE I
PARTICIPANTS’ RESPONSES (AGREEMENT TO THE STATEMENT) TO SURVEY QUESTIONS.

Survey Questions LASC MISC

The assistance from the intelligent robots was helpful. 7.4 7.9

The robot did what I wanted. 8.2 8.2

I accomplished the tasks better with the assistance of robot. 9.2 9.3

I was troubled by the assistance of the robot. 3.6 1.2

I was satisfied with the system. 7.8 8.6

rate of LASC and MISC is almost the same, and the ANOVA

result is F = 0.05, p = 0.8265, indicating that there is no

significant difference between the two. Fig.2(b) shows that the

average path length of MISC is shorter than that of LASC, that

is, the task is completed faster in MISC mode. The result of

ANOVA is F = 8.65, p = 0.0087, indicating that the two are

significantly different and the gap between them is statistically

significant. As shown in Fig.2(c), the number of human inputs

per episode (the number of keystrokes per episode) in MISC

mode is mostly between 100 and 500, while the number of

human inputs in LASC mode is mostly between 300 and 800.

We believe that the reason for the difference is that minimal

intervention prevents humans from using additional inputs to

resist the assistance from the robots, and humans does not

need to repeat actions multiple times to make their commands

accurately executed, thereby reducing unnecessary workload.

In order to evaluate participants’ acceptance of robot au-

tonomy and satisfaction with the shared control system, we

asked participants to rate the system performance, as shown in

Table I. 10 means strongly agree, 0 means strongly disagree.

Participants mostly think that the assistance of the robot is

useful and can help them to complete the task better (the

first and third rows), and the score of MISC is slightly higher

than that of LASC. However, MISC and LASC have exactly

the same score on whether the robot did what the participant

wanted to do (the second row). We believe that the reason is

that the robots and humans have the same ultimate goal but

different plans for the specific implementation of each step.

When the help provided by the intelligent robot is different

from the plan envisaged by the participants, human may use

more inputs to fight with the robot autonomy (the fourth row).

Humans expect to operate the system with the help of the

intelligent robot as a leader and not be disturbed by this kind

of help. As shown in the fifth row, MISC gets a significantly

higher score for human’s satisfaction with the system.

V. CONCLUSION

In this paper, we propose an adaptive arbitration method for

shared control systems, which minimizes the deviation from

the human inputs while ensuring the system performance via

deep reinforcement learning, providing humans the maximum

assistance with the minimal intervention. We set an adaptive

threshold based on the confidence of intention inference and

select the action that is closest to the human input among

the actions whose control effect exceeds the threshold as the

optimal action for execution, in order to balance human’s

need for control authority and need for performance. The

experiment results show that our method achieves high task

success rate and shorter task completion time with less human

inputs, while maintaining higher human satisfaction.
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